归一云思
主页网络文摘美文
文章内容页

变则通——浅谈圆锥曲线问题中的解题途径的活化

  • 作者: 小品文选刊
  • 来源: 归一文学
  • 发表于2023-11-09
  • 热度11481
  • 王承超

      (湖北省恩施土家族苗族自治州高级中学 湖北 恩施 445000)

      ?

      变则通
    ——浅谈圆锥曲线问题中的解题途径的活化

      王承超

      (湖北省恩施土家族苗族自治州高级中学 湖北 恩施 445000)

      圆锥曲线在生活与生产当中有广泛的应用,圆锥曲线问题亦是高考的热点和难点,然而如果我们能在求解过程当中,积累方法,活化解题途径,常可以大大简化解题途径,可谓“变则通”。下面列举圆锥曲线问题中的常用方法。

      圆锥曲线;解题途径;变通

    1 巧用圆锥曲线定义

    1.1 求轨迹活定义

      

      解法1:(直接法)

      则2(x+1)=-2(x-1)+y2∴C的轨迹方程为y2=4x

      解法2:(定义法)

      

      

      ∴P的轨迹为抛物线。由F(1,0),l:x=-1. ∴y2=4x

      1.2 求最值活用定义

      

      

    2 巧用点差法

    点差法运用设而不求的思想,是将几何条件代数化的一种重要途径,可以在以下几个方面中体现其应用。

      2.1 求轨迹方程中点差法应用

      分析:提及中点,必然和A、B的坐标联系到一起。那么利用点差法将AB的斜率K值表示出来。

      

      

      

      

      

      

      评析:从不同的角度写出AB的斜率,运用点差法思想解决问题。

      2.2 圆锥曲线上点的对称问题中点差法的应用

      例4.若抛物线y=x2上存在两点关于直线l:y=m(x-3)对称,则实数m的取值范围是?

      

      

      

      

      整理可得12m3+2m2+1<0.即(2m+1)(6m2-2m+1)<0

      

      评析:圆锥曲线上点的对称问题一般采用联立方程法找参数之间的关系,再用判别式大于零来锁定取值范围。但实际上易得到AB中点在l上,而kAB·kl=-1,点差法可以恰到好处的运用这个条件从而解决问题。

    3 巧妙利用参数方程

    例5.从短轴长为2b的椭圆中划出一面积最大的矩形,其面积最大值的取值范围是[3b2,4b2],则该椭圆的离心率取值范围是。

      

      

      

      

      利用的是函数思想,数据复杂易出错。但是如果知道利用椭圆的参数方程,则会简便许多。

      方法2:A(a·cosθ,b·sinθ),S=4ab·sinθcosθ=2ab·sin2θ

      

      评析:方法1引入4个未知量来表示S,利用函数思想需考虑对称轴和定义域。

      方法2明显突出参数方程的优越性,简介明了,计算量小。

      [1] 圆锥曲线问题的解题策略[J].李梅.学周刊.2015(16)

      G633.6

      A

      1672-5832(2017)07-0085-01

      本文标题:变则通——浅谈圆锥曲线问题中的解题途径的活化

      本文链接:https://www.99guiyi.com/content/632099.html

      • 评论
      0条评论
      • 最新评论

      深度阅读

      • 您也可以注册成为归一的作者,发表您的原创作品、分享您的心情!

      热点阅读