归一云思
主页网络文摘杂文
文章内容页

整体思想的解题方法与技巧

  • 作者: 新生代
  • 来源: 归一文学
  • 发表于2023-11-09
  • 热度22799
  • 黄剑瑜 南安市联星中学 福建南安 362311

      许多代数式的求值没有给定具体字母的取值,而是给出一个代数式的值,且已知代数式中的字母的值无法直接计算出来,这时,我们应想到运用整体代入的思想方法来解决问题,用整体思想求值时,关键是要如何确定整体。下面我就举例探讨如何用整体代入思想来求代数式的值:

      一 .直接代入法

      例1已知x2-x=3则(x2-x)2-2(x2-x)+2=__

      分析 本题是直接代入求值的一个基本题型,x虽然不知道,但我们发现已知式与未知式之间都有x2-x,只要把x2-x看作一个整体代入所求的代数式即可。

      解(x2-x)2-2(x2-x)+2=32-2×3+2=9-6+2=5

      针对训练 已知x-y=2,则(x-y)2-4(x-y)+3=__

      二.变形未知式再代入

      例2已知a2-3a=6,则6a-2a2=__

      分析这两个式子看起来好像没有太大的联系,其实却存在非常紧密的内在联系,未知式是已知式的-2倍,可对未知式作适当的变形再代入求值。

      解6a-2a2=-2(a2-3a)=-2×6=-12

      针对训练 已知a-b=4,则6-a+b=__

      三.变形已知式再代入未知式

      例3 已知a-b=3,a-c=1则 (a-b)2+(b-c)2+(c-a)2=__

      分析 观察已知式和未知式,它们都含有a-b,c-a=-(a-c),可以整理b-c=(a-c)-(a-b)=-2,再分别代入求值。

      解 由a-b=3,a-c=1可得b-c=-2

      (a-b)2+(b-c)2+(c-a)2=32+(-2)2+(-1)2=9+4+1=14

      

      

      本文标题:整体思想的解题方法与技巧

      本文链接:https://www.99guiyi.com/content/1164181.html

      深度阅读

      • 您也可以注册成为归一的作者,发表您的原创作品、分享您的心情!